457 research outputs found

    Performance Evaluation of a Prognostic Framework for Electro-Hydraulic Actuators for Stability Control Augmentation Systems with Different Sensors Suites

    Get PDF
    Stability Control Augmentation Systems (SCAS) are widely adopted to enhance the flight stability of rotary-wing aircraft operating in difficult aerodynamic conditions, such as low altitude missions, stationary flight nearby vertical walls or in presence of heavy gusts. Such systems are based upon small electro-hydraulic servosystems controlled in position through a dedicated servovalve. The SCAS operates with limited authority over the main control linkage translating the pilot input in the movement of the main flight control actuator. Being critical for the operability of the helicopter, the definition of a Prognostics and Health Management (PHM) framework for the SCAS systems would provide significant advantages, such as better risk mitigation, improved availability, and a reduction in the occurrences of unpredicted failures which still represent one of the most known downsides of helicopters due to their very severe operational environment. Since SCAS actuators are usually equipped with a low number of sensors, it is at the present time unclear whether a fully realized PHM system can be prepared without resorting to the introduction of additional sensors. This paper deals with this subject evaluating the performances of a fault diagnosis tool operating considering different sensors suite (traditional and with additional sensors), and different PHM strategies, using in-flight data or their combination with dedicated pre-flight checks to cover the most common failure modes. The analysis is then completed with an evaluation of the prognostic capabilities of the proposed strategies, highlighting benefits and limitations of the proposed solutions

    Performance evaluation of a Ball Screw mechanism through a multibody dynamic model

    Get PDF
    Ball screws are mechanism to convert the rotational into linear motion and viceversa and are widespread in a variety of different sectors. A detailed high-fidelity dynamic mathematical model of such component is paramount in several fields and, in particular, in the definition of a PHM system for flight control EMAs in order to increase their reliability. In fact they can be used as a virtual test bench on which inject artificial defects and study their effect on specific indicators. This paper presents a MBD model of a single-nut ball screw with internal recirculation able of describing the full dynamic of each internal component allowing a more in-depth understanding of the system behavior and poses the basis for PHM-oriented analyses on different degradations

    Els efectes de la crisi econòmica en la investigació

    Get PDF
    Els efectes de la crisi econòmica en la investigaci&oacute

    Advanced Diagnostics of Position Sensors for the Actuation Systems of High-Speed Tilting Trains

    Get PDF
    Trains tilting permits a train to travel at a high speed while maintaining an acceptable passenger ride quality with respect to the lateral acceleration, and the consequent lateral force, received by the passengers when the train travels on a curved track at a speed in excess of the balance speed built into the curve geometry. The tilting of a train carbody is performed by a control and actuation system which operates as a closed servoloop accepting the commands from the train control system, generating the torque necessary to tilt the carbody with respect to the bogie and measuring the tilt angle to close the control loop. Measurement of the tilt angle of each train vehicle is performed by two sensors located in the front and rear part of the vehicle. Since a correct tilt angle measurement is vital for the system operation and for ensuring a safe ride, in case of discrepancy between the signals of the two tilt angle sensors of any vehicle, the tilting operation is disabled and the train speed is reduced. An innovative tilt angle sensors health management system is herein presented that makes intelligent use of all available information to allow detection of malfunctioning of an individual tilt angle sensor, thereby enabling a continued operation of the tilting system and a high speed travel after a sensor failure occurs

    A Robust Adaptive Hydraulic Power Generation System for Jet Engines

    Get PDF
    The paper presents an innovative hydraulic power generation system able to enhance performance, reliability and survivability of hydraulic systems used in military jet engines, as well as to allow a valuable power saving. This is obtained by a hydraulic power generation system architecture that uses variable pressure, smart control, emergency power source and suitable health management procedures. A key issue is to obtain all these functions while reducing to a minimum the number of additional components with respect to the conventional hydraulic power generation systems. The paper firstly presents the state-of-art of these systems and their critical issues, outlines the alternative solutions, and then describes architecture, characteristics and performance of the hydraulic power generation system that was eventually defined as a result of a research activity aimed at moving beyond the present state-of-art in this fiel

    Collaborative robotics: Enhance maintenance procedures on primary flight control servo-actuators

    Get PDF
    Electro-Hydraulic Servo-Actuators (EHSAs) are mainly used to command primary flight control surfaces in military and commercial aircraft. Since these devices are crucial for vehicle stability and maneuverability, a correct assessment of their health status is mandatory. Within this framework, a joint research project (HyDiag), held by Politecnico di Torino and Lufthansa Technik AG (LHT), aims to provide a more efficient and reliable procedure to determine the operating conditions of the EHSA. A smart and automatic sequence, able to extract several health features of the Unit Under Test (UUT), has been developed and integrated. The present paper discusses the implementation of a collaborative robot, equipped with a vision system and customized tools, for both health features extraction, and maintenance tasks on unserviceable servo-actuators. The main challenges related to the automation of such complex tasks in a real working environment are highlighted, togetherwith the advantages brought by the proposed approach. The paper also presents the first results of an ongoing experimental campaign. Specifically, it reports the enhancements of the maintenance procedures using collaborative robotics and possible future developments

    Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots

    Get PDF
    Dynamic parameters are crucial for the definition of high-fidelity models of industrial manipulators. However, since they are often partially unknown, a mathematical model able to identify them is discussed and validated with the UR3 and the UR5 collaborative robots from Universal Robots. According to the acquired experimental data, this procedure allows for reducing the error on the estimated joint torques of about 90% with respect to the one obtained using only the information provided by the manufacturer. The present research also highlights how changes in the robot operating conditions affect its dynamic behavior. In particular, the identification process has been applied to a data set obtained commanding the same trajectory multiple times to both robots under rising joints temperatures. Average reductions of the viscous friction coefficients of about 20% and 17% for the UR3 and the UR5 robots, respectively, have been observed. Moreover, it is shown how the manipulator mounting configuration affects the number of the base dynamic parameters necessary to properly estimate the robots’ joints torques. The ability of the proposed model to take into account different mounting configurations is then verified by performing the identification procedure on a data set generated through a digital twin of a UR5 robot mounted on the ceiling

    Identification of a UR5 collaborative robot dynamic parameters

    Get PDF
    The present paper describes an algorithm for the identification of the dynamic parameters of an industrial robot. This approach is based on the possibility to write robot dynamics in a linear form with respect to a specific set of dynamic parameters. To properly detect them, the coefficients of a 5th order Fast Fourier Series (FFS) trajectory have been optimized using a genetic algorithm. Such identification trajectory has been then commanded to a UR5 collaborative robot from Universal Robots and experimental joints torques have been recorded at a frequency of 125 Hz. Base dynamic parameters were identified using least square errors optimization reaching low standard deviations. The algorithm has been validated with a second persistent trajectory with good results. Temperature effects on friction coefficients have been analyzed by running two identification processes: one just after the first power-up of the robot and the other one after a half an hour warm-up

    On the effects of strain wave gear kinematic errors on the behaviour of an electro-mechanical flight control actuator for eVTOL aircrafts

    Get PDF
    In recent years, the increasingly growing overcrowding of urban environments and the resulting road traffic congestion have pushed toward the search for alternative mobility solutions, among which there are novel Urban Air Mobility (UAM) technologies. The UAM, together with the development of electric actuation systems, would allow decongesting the streets by exploiting the sky using electric Vertical Take-Off and Landing (eVTOL) aircrafts. Urban air mobility vehicles are primarily based on fully electrical flight control systems with rotary output. Since such technology is relatively new and unproven, Prognostic and Health Management (PHM) algorithms, able to continuously monitor the health status of such systems, are of particular interest. The diffusion of these systems strongly depends on the general confidence of possible customers. The present paper proposes a preliminary study on the effects of the kinematic error of a Strain Wave Gear (SWG), the most used reducer for this kind of applications, on the behaviour of an Electro-Mechanical Actuator (EMA) used as a flight control actuator for an eVTOL aircraft. The simulation results show how the unavoidable kinematic error affects the EMA performances and how its presence can be detected and quantified in strain wave gears
    • …
    corecore